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ABSTRACT: The Adaptive Multi-scale Simulation Infrastructure (AMSI) is a set of libraries 

and tools developed to support the development, implementation, and execution of general multi- 

model simulations. Using a minimal set of simulation meta-data AMSI allows for minimally 

intrusive work to adapt existent single-scale simulations for use in multi-scale simulations. 

Support for dynamic runtime operations such as single- and multi-scale adaptive properties is a 

key focus of AMSI. Particular focus has been spent on the development on scale-sensitive load 

balancing operations to allow single-scale simulations incorporated into a multi-scale simulation 

using AMSI to use standard load-balancing operations without affecting the integrity of the 

overall multi-scale simulation.  

INTRODUCTION: Most physical models and implementations using numerical methods 

operate at a single scale characteristic to the problem – the scale at which the preponderance of 

attributes governing the underlying physics being modeled are measured – and the scale at which 

the resolution of the solution is considered commensurate with the desired accuracy of the 

simulation.  

Introduction of influence from scales orders of magnitude removed from the primary scale can 

take place in several different ways. This influence can be incorporated during the mathematical 

development of the physical model itself. In this case the multi-scale features are incorporated 

into the numerical implementation automatically, as a result of their presence in the 

mathematical model. Multi-scale influences can also be incorporated in a more strictly numerical 

sense, combining physical models operating at different scales but opera ting on some of the 

same physical fields and values [12].  

Numerically multi-scale simulations associate many numerical implementations of single-scale 

physical models and cause them to interact in a meaningful way by passing key physical terms 

from some scales and supplying them to others, typically this will involve up-/down-scaling 

equations to take into account the difference in scale. This is only useful in cases where terms 

from the various incorporated scales contribute meaningfully to the solution at the primary scale 

of interest. The domain at the scale of interest (for brevity the engineering scale) is sufficiently 

large that conducting the entire simulation with a granularity orders of magnitude smaller would 

make the simulation computationally intractable.  

This restriction requires the development of multi-scale simulation paradigms: algorithms and 
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operations which allow the influence of various far-removed scales to be accurately reflected in 

the simulation of the engineering scale. While there are several well-established multi-scale 

paradigms (particularly the heterogeneous multi-scale method as well as the concurrent multi-

scale method), this is a rapidly advancing field and as new problems are considered additional 

multi-scale models will undoubtedly be developed. As such developing a set of tools to optimize 

a single multi-scale paradigm will be less impactful then the development of general tools which 

can be used themselves to implement new multi-scale paradigms, while supporting extant 

paradigms as efficiently as possible.  

DETAILED DESCRIPTION OF EXPERIMENT/METHOD: Currently AMSI 

provides interfaces for describing and managing the execution of individual scales in a multi-

scale simulation, for defining and managing the scale-coupling communication required by such 

simulations, and for planning and enacting scale-sensitive load balancing operations on 

individual scales in a multi-scale system.  

AMSI operates by maintaining a set of minimal simulation metadata in order to model various 

quantities of interest during simulation execution. A decentralized approach toward control is 

taken; dynamic control decisions are made and implemented at runtime during collective 

operations. In order to avoid the introduction of unnecessary parallel barriers into the code, 

AMSI control decisions are only made during operations which are already collective over the 

set of processes effected by a given control decision.  

During simulation initialization simulation scales are declared and then defined by associated 

them with process sets, and declaring their scale-linking relations. Process sets are simply 

mathematical sets of process ranks implemented so as to take advantage of any mathematical 

conveniences to minimize explicit storage whenever possible. At present process sets must be 

non-overlapping to take advantage of the simulation control portions of the AMSI libraries, but 

for the simulation metadata modeling, scale-coupling communication, and multi-scale load 

balancing operations, the process sets associated with related scales may overlap. Scales are 

declared to be related if some quantities of interest (such as tensor field values) are transmitted 

between them for scale-coupling.  

By using data structures describing the dynamic state of the parallel execution space AMSI can 

determine which scales will need to interact, and only for these interacting scales are the required 

internal buffers and scale-coupling structures allocated. This approach is taken in order to reduce 

unneeded overhead caused by maintaining data structures specific to interacting scale-tasks, 

which would be the case when assuming that any two scale-tasks may interact. Dynamic 

redefinition of which scales interact is not currently possible, but will be implemented to support 

dynamic scale instantiation.  

Scale-linking quantities are dynamically registered with the AMSI system by the scale-task that 

produces the data, along with information about which interacting scale-tasks will receive how 

much data. This data is stored in AMSI, and when scale-linking communication is to take place, 

a user- configurable algorithm operating on a mapping of all pertinent scale-linking data is used 

to provide a full plan of scale-linking communication. This plan is the disseminated (only 

partially) to those processes that need to know their individual role in the communication. At this 



 
  
 
 

 
 
 

point scale-linking communication of any POD datatypes may take place at any time. If the 

quantity of scale-linking data changes at any point the previous steps must be repeated, but if the 

quantity remains the same for several instances of inter-scale communication the processes do 

not need to occur every time. Quantity here is a fairly abstract term, as the discrete units modeled 

by AMSI metadata structures is arbitrary: they can be any discrete unit of data that can be 

handled by the underlying communications system (MPI in most cases).  

Multi-scale load balancing processes also make use of the meta-data structures concerning the 

discretization of the parallel execution space. AMSI currently has separate functionalities for: 

data removal, data addition with load balancing, and scale-sensitive load-balancing (migration). 

The removal routine does not automatically call any load balancing or migration routines and 

should normally be paired with the migration routine. In the current hierarchical multi-scale test 

problem these routines are called in the previously listed order. Data is first removed which may 

unbalance the workloads. Next, data is added with load balancing so that differences in workload 

can be filled by the new data. Finally, scale-sensitive load-balancing is used to rectify any 

remaining unbalance, though as the computational demand (weight) associated with the newly 

distributed data is typically not known a-priori, some semi- accurate weighting metric should be 

used to ensure the new data is not treated incorrectly. Currently each of these routines also 

assumes implicit ordering of data within AMSI since explicit ordering has not yet been 

implemented. This means that when using the load balancing and migration routines, the user’s 

understanding of the data outside of AMSI needs to be reordered to maintain agreement across 

scales. This is a side-effect from the use of implicit (user-defined) ordering of scale-coupling 

data, which has the benefit of not introducing additional memory requirements to explicitly and 

uniquely number these pieces of data inside of AMSI. Further, AMSI provides the capability to 

automatically reorder the user data and provide a report on the updated ordering. Still as this may 

be undesirable in some cases, work is being conducted to provide an alternative option using 

unique numbering internal to AMSI to avoid effecting user data.  

Due to the necessity of retaining inter-scale linkages through the load-balancing processes, the 

actual data migration undertaken to implement a specific load balancing plan is typically 

conducted internally by the AMSI system that is provided with buffers of data being load-

balanced by each process on the appropriate scale. However, in order to maintain usability in 

more general situations, it is also possible to simply inform the AMSI system that the current 

load-balancing plan has already been accomplished by user-implemented data migration. This 

functionality combined with the ability to use user-designed load-balance planning algorithms 

allows AMSI to work with entirely external load-balancing libraries and algorithms, allowing 

scale-sensitive load-balancing to be used even when a specific multi-scale use case falls outside 

the bounds of capabilities built into the system.  

RESULTS AND DISCUSSION: A multi-scale simulation for the analysis of the 

mechanical behaviors of soft biological tissues was developed and implemented using AMSI. 

The biotissue simulation is currently a two-scale hierarchical multi-scale simulation coupling 

two continuum analyses. The primary scale (engineering scale) is a macroscopic simulation 

using the finite element method on the cauchy momentum balance equation. The tertiary scale is 

microscopic and takes place at every macro-scale integration point (those points where the stress 



 
  
 
 

 
 
 

response of the material is queried during the macro-scale simulation) and used to supply the 

material response. The micro-scale simulation simply conducts a force-balance operation on a 

randomly generated collagen fiber-network residing inside of a unit cube representative volume 

element (RVE) which is deformed using the state of the associated macro-scale element, and has 

appropriate boundary conditions enforced. More detail into the derivation of this multi-scale 

system can be found in [6] [1] [7]. Discussion of the dimensionalization of the dimensionless 

force terms (the upscaling operation from micro-scale to macro-scale) produced by each fiber 

network can be found in [8] [3].  

 

Figure 1: Biotissue multi-scale domains 

 

The biotissue simulation was implemented by combining two single-scale simulations: a typical 

parallelized finite element analysis and a quasistatics code. The combination of these two 

simulations using AMSI was very straightforward, involving the introduction of an initialization 

and configuration phase for AMSI, wrapping the pre-existing main functions of each simulation 

in an AMSI scale-task callback, and finally introducing relevant AMSI communication (and 

load-balancing) calls at locations where scale-interaction is required. A visual representation of 

the biotissue multi-scale relationship can be seen in Figure 1. 

The simulation has been run many times on the Amos BlueGene/Q managed by the Center For 

Computational Innovations at Rennselaer Polytechnic Institute, and has scaled up to 250k 

elements at macro-scale with over 16k cores (over 90% assigned to micro-scale simulations as 

these represent the bulk of actual computation). Scaling beyond this should be possible but has 

not currently been conducted. Theoretically the simulation should be able to scale up to around 

300 million elements, limited by memory restrictions on the AMOS machine and the memory 

associated with a single RVE. Scaling to the full machine is however necessary to get a richer 

understanding of the performance of AMSI.  



 
  
 
 

 
 
 

Symposia on the development and use of AMSI for the biotissue problem have been given at the 

SIAM Conference on Parallel Processing for Scientific Computing 2014 and at the SIAM 

Conference on Computational Science and Engineering 2015.  

The Parallel Processing for Scientific Computing talk [11] was a discussion of the general layout 

and services provided by AMSI and the implementation of the biotissue example problem as 

well as initial performance results of the biotissue problem on a relatively modest (20k elements) 

mesh and a more reasonable mesh (200k elements) on the domain seen in Figure 2.  

 

 
Figure 2: Engineering scale mesh 

 

Figure 3: Multi-scale solver 1st iteration (20k elements) 



 
  
 
 

 
 
 

Figure 3 is a strong scaling study conducted on a 20k element mesh, leaving the number of 

macro-scale processes constant and varying the number of micro-scale processes from just 32 to 

8192 by powers of 2. The total time to assemble and solve a single tangent stiffness matrix at the 

engineering scale is considered (1 Newton-Raphson iteration), and different portions of the 

overall workload are shown. The actual matrix solve is unchanging as the number of macro-scale 

processes which compute the linear solve remains constant. Thus the matrix solve time 

represents the idealized optimal time to compute a single iteration. It is clear that as the number 

of micro-scale processes increases, the overall solve time approaches the matrix solve time, and 

while the communication time increases, it is still several orders of magnitude less than the 

overall solve time. 

 

 

Figure 4: Strong scaling on 20k mesh 

Figure 4 is another interpretation of the same strong-scaling study, weighted by the total time-to-

solution for each case. It shows that as the number of micro-scale processes increase sufficiently, 

the overall computational load is dominated by the matrix solve. Increasing the number of 

processes at macro-scale will result in the time-to-solution for the matrix solve reducing as well, 

but both the size of macro- and micro-scales (and their ratio) must be considered when trying to 

determine the optimal allocation size and scale-task assignment. This figure suggests that a 1:128 

macro-to-micro ratio will result in equal time being spent on both computations, and allow local 

load balancing operations at individual scales to make the most impact. Of course overall time-

to-solution can be minimized by simply allocating as many processes as are available to solve 

the problem, but allocating in the above ratio, weighted by the efficacy of individual scale load-

balancing to impact the performance of a single scale, should result in better time-to-solution for 

the multi-scale simulation. Further discussion and analysis of this concept will be discussed in 

[10].  

The Computational Science and Engineering talk [9] was a discussion of the scale-sensitive load- 



 
  
 
 

 
 
 

balancing operations provided by AMSI and their usage in the biotissue example problem. For 

this talk only the 20k mesh was used as the run times for a 200k mesh proved too long for a 

reliable turnaround on results, however the longer the computation (in terms of incremental load 

steps applied) the more benefit should be seen from the scale-sensitive load balancing. Longer 

runs on a larger (250k element) mesh are currently being conducted, as recent work on 

performance and memory footprint has allowed much quicker overall execution times making 

larger runs feasible. 

 

 
Figure 5: Unbalanced load distribution (20k elements) 

As each RVE is a nonlinear simulation there is no a-prior estimate of the computational load 

each RVE represents, so the optimal initial distribution is simply treating the weight of each 

RVE as 1. Thus each micro-scale process is assigned either  or 

. Once the first load-balancing event is reached, regardless of the granularity at 

which load-balancing is occurring for a given case, each RVE has recorded the total number of 

newton iterations it has conducted since the previous load-balancing event. This number is used 

as a heuristic weighting metric to determine the computational load of each individual RVE. The 

iteration count metric was chosen as each iteration takes a similar level of work to complete, up 

to the difference in the number of RVEs for each unique fiber network. Further, assuming linear 

incremental loading, regions in the engineering-scale mesh located near stress concentrators will 

result in ’more interesting’ boundary conditions for the micro-scale problems related to 

numerical integration points in that region, which may result in the RVE requiring more Newton 

iterations to converge to an adequate solution, since the boundary conditions may lie farther from 

the initial state of the RVE in the regime of convergence for the nonlinear problem.  

The initial distribution of weights is shown in figure 5, with a 20k element macro-scale mesh and 

256 processes assigned to compute micro-scale RVEs. The left graph shows the overall weight 

(the sum of all newton iterations for all RVEs assigned to a given process) while the right graph 

shows the deviation from the average. While the average deviation is under 10% in all cases, the 

max deviation is what truly matters since all micro-scale RVEs must finish processing before 



 
  
 
 

 
 
 

scale-coupling communication can take place and the macro-scale can continue to compute the 

elemental matrices and assemble a global tangent stiffness matrix.  

Figure 6 shows the result after scale-sensitive load-balancing (using the Zoltan libraries [4] [2] to 

plan the actual migration) is conducted. The maximal deviation after the first iteration is 

unfortunately much higher. But after that first iteration the max deviation is reduced by 

approximately 80%. This is illustrative of the trend seen in the biotissue simulation, the number 

of micro-scale newton iterations conducted during the first incremental load step are not 

illustrative of the number of micro-scale newton iterations required during additional incremental 

load steps, which stay largely the same. Thus the first load balancing operation over corrects the 

issue, but the second and subsequent load-balancing operations result in better load balancing 

and run times overall. This can be seen more clearly in figure 7 which shows the weights for 64 

micro-scale processes with the same mesh as above over 9 incremental loading steps, the left 

graph shows the load without balancing and the right shows the load with balancing. The max 

deviation without load balancing stays in the 20% range, while with load balancing it typically 

stays under 10%, as low as 2.77% in the 8th loading step.  

 

Figure 6: Balanced load distribution (20k elements) 



 
  
 
 

 
 
 

 

Figure 7: Nine incremental loading steps (20k elements) 

 

ANTICIPATED IMPACT: Currently AMSI supports only static parallel execution space 

discretization with non-overlapping process sets. The restriction on non-overlapping process sets 

is currently being worked on to allow temporary scale-reassignment while a scale is blocked 

waiting on an associate scale and has no work which can be conducted. However, more dynamic 

management of the execution space represents the most significant current goal of the AMSI 

project. Implementation of this feature – which will allow scale- tasks to grow and shrink as 

computational demands associated with the scale change – is dependent on much if not all of the 

proceeding functionality (especially load balancing and migration features, as all relevant scale 

data from a process to be dynamically reassigned scales must be recovered and redistributed 

throughout the related scale).  

Scale-balancing is the balancing of scale-tasks against each other to minimize rendezvous time 

and maximize time spent in useful computation. Scale-balancing is a difficult prospect as it 

involves man- aging many dynamically-changing scales which themselves are being load-

balanced using scale-sensitive load-balancing techniques, and represents a significant and 

promising area of future work. Once the ability to dynamically manage the process set associated 

with a scale is developed, algorithms must be developed to make the best use of this feature. 

Developing these algorithms represents a major - and daunting - area of future work, as there are 

numerous constraints that must be taken into account in order to optimize such a scheme.  

A second micro-scale simulation, where the collagen fibers are embedded in tissue is currently 

implemented as a standalone simulation. Work to incorporate this into the biotissue example 

simulation will be conducted when the correct scale-coupling terms have been developed 

(inclusion in the AMSI system is already accomplished, but the up- and down-scaling operations 

have not been developed yet so this RVE is not used). [5] [13] [14]  



 
  
 
 

 
 
 

At present AMSI has no meta-model of the computational domain of a problem, or of the 

relation between the domains of associated scales, it simply knows that the relationship exists. A 

richer model of the domain relation between problems would likely allow for a wider range of 

automation in scale-linking and dynamic scale management operations. This will likely not be 

addressed until a test case where such functionality is needed or beneficial is considered.  

An article focusing on the implementation and use of the scale-sensitive load-balancing 

operations in AMSI for the biotissue example problem is being finalized and will be submitted 

for publication soon [10]. Additional articles focused primarily on the usage of the Biotissue 

example simulation to solve novel problems of interest is also being worked on and should see 

submission in the coming months.  

At present there are no current proposals associated with this work for ongoing funding, simply 

because funding for associated projects (biotissue and other multi-scale projects) has already 

been secured. Thus work on AMSI will continue during the work on projects which make use of 

the features it provides. Several interesting multi-scale simulations have been suggested, 

however, particularly a combination of a Monte-Carlo code and a Magnetostatics code by a 

fellow researcher. At present this idea is in a preliminary stage of development, though using 

AMSI would be relatively straightforward and achieving a working code (given two working 

single-scale codes, and the development of physically-sound scale-linking operations) would 

likely take only several days of implementation time.  

There are several ongoing projects at the Scientific Computation Research Center (SCOREC) on 

the RPI campus that AMSI will be used with. Particularly SCOREC’s ongoing work on 

incorporating our dynamic mesh operations with the Albany simulation system developed at 

Sandia National Labs. For multi-scale simulations using the Albany simulation code, we will 

make use of AMSI’s capabilities to be minimally intrusive and only require modifications at 

those locations in code where scale-coupling terms are needed.  

 

 

CONCLUSION: The development of the Adaptive Multi-scale Simulation Infrastructure has 

produced an initial set of tools capable of easing the implementation and execution of multi-scale 

simulations by combining robust legacy codes in a minimally intrusive manner. The AMSI 

libraries operate independently of the underlying simulation codes, both in terms of language of 

implementation and the numerics operations undertaken to achieve solution.  

This freedom allows AMSI to be used for a wide variety of multi-scale cases. However this 

freedom also means that it is possible to do things poorly, as with any sufficiently low-level 

system. Thus future developments are likely to be focused on building a hierarchy of abstractions 

atop the currently implemented low-level systems ease in the use of AMSI for the widest-used 

subset of the cases AMSI provides support for.  

A set of operations for managing adaptive multi-scale simulations has been developed and 

implemented in AMSI, specifically support for dynamically adding and removing scale-tasks at 

run time. This support is being built on and enriched to allow this complex operation to happen 



 
  
 
 

 
 
 

with minimal programmer intervention, at present the support is low-level and some simulation 

developer intervention in code to manage the newly-initialized or removed scales is needed. 

Building on this operation and expanding the metadata model AMSI maintains of the simulation 

state will allow for the implementation of fully dynamic simulation scale control: arbitrary 

initialization and destruction of non-primary scales, and allowing blocked process scales to be 

reassigned (temporarily or permanently) to higher-priority scales.  

Additionally, support for load balancing an individual scale of a multi-scale simulation while 

maintaining the overall integrity of the multi-scale coupling operations has been developed. This 

allows more traditional load balancing operations – vital to optimizing parallel performance and 

time-to-solution in traditional massively parallel simulations – to be used on scale codes being 

used with the AMSI systems. This also represents an important step in the development of 

general adaptive capabilities for multi-scale simulations, where they greatest challenge is 

balancing the execution of many interacting (and possibly blocking) simulation scales.  
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